Do we still need natural intelligence
in radiation oncology?

RO-001

on behalf of

World Association of Robo Sapiens in Healthcare
(WARSH)

92nd OECI Oncology Days
16. June 2070, CYBERSPACE 001.007.2345.213.8552



Artificial Intelligence in radiation
oncology

Jozsef Lovey

National Institute of Oncology
Budapest - Hungary

@ECI 44 Valencia, Spain



DISCLOSURES

No disclosures.



Where Al in radiation oncology can be used?

Among many useful areas
Al can be used also for everything



Decision support tools that Automated tumour and organ Enhanced image guidance, motion
combine clinical, genomic and segmentation as well as optimal management and scheduling promise
imaging data promise to support dose prediction promise to to improve clinical efficiency and
precision oncology practices streamline the planning process patients’ outcomes and experiences
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Al promises to reduce radiation Al tools might help expedite Accurate prediction of response to treatment,
exposure of patients, enhance image the QA process and detect rare radiation-induced toxicities and other adverse
quality, suppress artefacts and enable erroneous events, especially for effects might provide real-time meaningful
more accurate image registration highly complex treatments clinical decision support

Nat Rev Clin Oncol (17), 771-782, 2020
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RO lives on images
mage processing (one of the strongest field in Al)

Different image modalities / image fusion
mages for planning, verification, (prediction, outcome)

Radiotherapy is a very formalized industrial like process

Well-defined rules

Solid data
Large number of algorithms already used

Very advanced on QA
Decreasing the influence of human error




Image quality enhancement

Image quality is often a problem in RO

CBCT look quite fine but still there is a room for
iImprovement

Using MR-s with weaker magnetic field (eg. open MR for
brachytherapy)

Al can helps to

Increase image quality
Decrease additional radiation (e.g. daily CBCT) during IGRT

Helps in adaptive radiation therapy



4D CBCT

Al CBCT

Chen et al. Front. Artif. Intell., 11 February 2021 Usui et al. Radiation Oncology (2022) 17:69
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CT-based target
and organ
contouring
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Courtesy of Laszlo Rusko, GE HEALTHCARE
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Deformable image registration
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Dose summation / adaptive radiotherapy

Fohlich et al. ] Contemp Brachytherapy. 2019 Novakova S, RO 2017



Autocontouring OAR / target volumes

Quality of segmentation influences
Tumour control
Side effects

Auto segmentation offers
Consistency
Decreased inter-observer variability
More accurate dose calculation
Decrease in the need of human resources

Challenges
Image quality
Artefacts

Delineation accuracy (post processing)
Small errors CERN IdeaSquare J Exp Innov 2017;1:3e12




Courtesy of Laszlo Rusko, GE HEALTHCARE




Sim CT Fx#1 Automatic  Fx#1 Supervised

Practical Radiation Oncology (2022)
Radiology 2019; 291:677-686 https://doi.org/10.1016/j.prro.2021.12.017



(Fully) Automated planning
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(Fully) Automated planning

Competition between
Effect (local control) and side effects

Between side effects

Young curable female cancer patient

Breast dose weight?

Coronary artery dose weight?

Secondary cancer or heart disease?

MIT technology review



Outcome prediction — side effects
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Ground Truth Predicted
Intra-RT PET Intra-RT PET

Front. Oncol., 18 August 2020 | https://doi.org/10.3389/fonc.2020.01592



Quality assurance — machine level
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Front. Artif. Intell. 3:577620.
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Quality assurance — patient level

Conventional Clinically Adopted Measurement-Based IMRT/VMAT QA Workflow
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Are there threats from Al?

_/

\ timoelliott.com

“We 're outsourcing all our critical business decisions to a
flawed algorithm with insufficient data — what could
possibly go wrong?!”

\

Inappropriate use of Al technique

Are you j

concerned about

the increase in
artificial
intelligence?

Am——

—

No, but I'm

concerned about

the decrease in

real intelligence.
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Comissioning of Al in radiation oncology
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Radiotherapy and Oncology 153 (2020) 55-66




Autocontouring

gé

Two systems we used

We did not do formal commissioning, the
radiographer checks the OAR and occasionally
the radiation oncologist

POOOVOWO WO

Significantly reduces time of OAR contouring
3+3 minutes of up and downloading to the clouds
10 minutes of post processing is required
Lot of ,unnecessary” contours are available
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MR based contouring is not yet available (e.g.
hippocampus) at every vendor



Alignment

Motions tracking (Synchrony)

Commissioning showed a good correlation with the
predefined data

Clinical experience supports the use




Al based techniques we use

Adaptive radiotherapy (ETHOS)
Just has started to implement
Commissioning will start with special (CIRS dynamic pelvic) phantom




CONCLUSIONS

Al will engage most of the technical procedures of radiation
oncology in some decades

The challenge is to provide big and good quality data in form of
imaging, physical and outcome data

Commissioning is a must — tools have to be developed

Clinical outcomes must be evaluated



CONCLUSIONS

If introduced and used appropriately Al will
Help to resolve the human resources crisis in radiation oncology
Will reduce the influence of human error on the process
Quality will increase
Local control / cure rate will be better

Side effects will decerese
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